STEREOCONTROL OF A TERTIARY HYDROXYL GROUP VIA MICROBIAL EPOXIDATION.

A FACILE SYNTHESIS OF PROSTAGLANDIN $\omega\text{-}CHAINS$

Osamu Takahashi,^{*} Junko Umezawa, Keizo Furuhashi, and Motoyoshi Takagi Bioscience Research Laboratories, Nippon Mining Co., Ltd. Niizo-Minami, Toda-shi, Saitama, 335 Japan

Summary; Optically active 1,2-epoxy-2-methylalkanes(1), useful precursors of tertiary alcohols, were prepared by microbial oxidation and converted to prostaglandin ω -chains.

Tertiary hydroxyl groups are frequently encountered in natural products and also important in drug design. Their stereocontrol, which had been difficult to access by the conventional methods, ¹ got to be facilitated by the Sharpless oxidation.² However, processes with the Sharpless' step require multi-step FGIs in several cases. Now we wish to report another approach, thus a microbial production of optically active 1,2-epoxy-2-methylalkanes(1) as useful precursors of tertiary alcohols. Their short-step conversions to unnatural prostaglandin ω -chains are also described.

A mixture of 2-methyl-1-alkene 2 (200 g), *n*-tetradecane (10 l), and a cell suspension of *Nocardia corallina* B-276 (15 g cell/l, 10 l)³ was stirred (600 rpm) at 30 °C with aeration(0.5 l/min).⁴ The organic layer, separated through centrifugation, was fractionally distilled to give the corresponding epoxide 1 in optically active form.

2 C _n	Noca H _{2n+1}	rdia corallin	0,,,	[∼] C _n H _{2n+1}	1a: n=3 1b: n=4 1c: n=5
Epoxide	Time	% Yield ^a	$[\alpha]_D^{25}$ (neat)	% ee ^b	Config.
1 a	48 h	32	-8.83°	76	R °
1 b	72 h	55	-9.28°	90	R ^d
1c	72 h	56	-7.39°	88	R°

a: See note 4. b: Determined by ¹H NMR analysis (270 MHz) using Eu(hfc)₃ as a chiral shift reagent (r/s=0.1). c: Asigned based on the similarity of the specific rotation with that of **1b**. d: Determined through a hydroxylation reaction (NaOH in aqueous DMSO) which gave (R)-(+)-2-methylhexane-1,2-diol (89 %ee). See note 5. Then **1 b** was reacted with lithium acetylide ethylenediamine complex in DMSO to afford acetylenic alcohol **3**, the precursor of 16-OH prostaglandins such as Rioprostil (**5**).⁶ On the other hand, **1 c** was reacted with sodium iodide in the presence of acetic acid⁷ to give iodohydrin **4**.⁸ The resulted 4 would be convertible into 15-OH prostaglandins such as Arbaprostil (**6**)⁹ via β -oxide ylide.¹⁰ In each ring-opening reaction, no detectable amount of regio-isomer was formed.⁸

Our microbial oxidation, which can be utilized for less functionalized alkenes³ than the Sharpless' one, would give shorter synthetic routes in several cases. Further investigation on stereocontrol of tertiary asymmetric centers is now in progress.

References and notes

- For example: G. Solladié, "Asymmetric Synthesis," ed by J. D. Morrison, Academic Press, Vol 2 (1983), p 157.
- For reviews: B. E. Rossiter, *ibid*, Vol 5 (1985), p 193; M. G. Finn and K. B. Sharpless, *ibid.*, Vol 5 (1985), p 247.
- 3. K. Furuhashi, M. Shintani, and M. Takagi, Appl. Microbiol. Biotechnol., 23, 218 (1986).
- 4. A better yield would be obtained through an efficient trap of the vapor of 2 lost by aeration.
- [α]_D²⁵=+3.60° (c 3.4, CHCl3). The literature value: +4.03°: P. F. Corey, Patent, US 4,633,025.
 Cf. idem., Tetrahedron Lett., 28, 2801 (1987).
- 6. H. C. Kluender, W. D. Woessner, and W. G. Biddlecom, Patent, US 4,132,738.
- Cf. J. W. Cornforth, R. H. Cornforth, and K. K. Mathew, J. Chem. Soc., 1959, 112; R. C. Cookson and J. M. Coxon, J. Chem. Soc. (C), 1971, 1446.
- Treatment of 4 with powdered NaOH in ether gave the starting epoxide (1 c) with complete retention of stereochemistry. It proves that racemization caused by non-stereospecific iodination at C2 and recyclization during the ring-opening process was not occured.
- 9. E. W. Yankee, U. Axen, and G. L. Bundy, J. Am. Chem. Soc., 96, 5865 (1974).
- 10. E. J. Corey, U. Koelliker, and J. Neuffer, J. Am. Chem. Soc., 93, 1490 (1971).

(Received in Japan 23 January 1989)